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Abstract: In this study, we present a Multi-Split Cross-Strategy 

(MSC-Strategy) designed to leverage synthetic tabular data generated 

by a Conditional Generative Adversarial Network (CGAN). Our 

study aims to investigate the potential of synthetic data in comparison 

to real-world data for improving machine learning predictive results. 

Firstly, we develop a CGAN architecture tailored to generate 

synthetic tabular data, trained on a comprehensive real-world dataset. 

Secondly, we validate the synthetic data generated by the CGAN to 

ensure its statistical fidelity and resemblance to the distribution of real 

data. Finally, we selectively leverage a subset of the generated data 

and apply our strategy to create a new combined training set 

comprising the training set of real data and the chosen subset of 

generated data. To validate our approach, we employ six diverse 

regression models: Decision Tree (DT), K-Nearest Neighbors 

(KNN), Random Forest (RF), XGB Regressor (XGB), and Support 

Vector Regressor (SVR). Each model is trained and tested using a 

training set of real data, generated data, combined data (training set 

of real data and generated data), and data formed by our MSC 

strategy. Our findings indicate that the training set formed by our 

MSC strategy demonstrates remarkable predictive performance 

compared to real-world data and generated data, highlighting its 

ability to enhance the prediction of machine learning models using 

only a subset of generated data. 

 

Keywords: Conditional Generative Adversarial Networks, Tabular 

Data Generation, Machine Learning 
 

Introduction 

One major obstacle that frequently comes in the way 

of data scientists trying to find answers to principal issues 

is the lack of sufficient data. Some machine learning 

models require kinds or amounts of data, which might not 

be available (Soori et al., 2023). High financial costs, time 

constraints, or engagement issues like privacy, safety, or 

time investment can all contribute to this limitation 

(Calderaro, 2015). It becomes impractical or perhaps 

impossible to obtain more data under such conditions.  

The adoption of synthetic data is becoming a 

feasible solution to this problem (Alloza et al., 2023; 

El Emam et al., 2020; Ladeira Marques et al., 2020). 

When data is created using artificial processes as 

opposed to being gathered from real-world events, it is 

referred to as synthetic data. Synthetic augmentation of 

data quantity and variety can result in significant 

improvements in performance for machine-learning 

models when executed right (Hernandez et al., 2022). The 

graph provided by Gartner illustrates the expected rise in 

the use of synthetic data in machine-learning applications 

in the upcoming years (Chatterjee and Byun, 2023).  

Applications for synthetic data’s scalability may be 

found in several sectors, including robots, finance, security, 

and autonomous cars (Rajotte et al., 2022). Its importance, 

however, there are many obstacles in the way of collecting 

large amounts of data (Saxena and Cao, 2021). Data 
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collection suffers from the high expenses of linked 

activities as well as the difficulty in finding samples 

who meet certain criteria. As a result, investigating 

artificial methods for producing verifiable data 

becomes an important task. A variety of techniques can 

be utilized to produce artificial data, but one 

particularly interesting approach is the application of 

GANs. GAN is composed of two neural networks that 

participate in an adversarial process. The discriminator 

attempts to separate synthetic data from actual data and 

the generating network attempts to fool it. The 

generator specifically aims to generate information that 

closely approximates actual data. The generator is 

penalized if the discriminator is successful in 

identifying synthetic information and vice versa. The 

model gains the ability to produce data that shows 

similarities to the original dataset through this iterative 

process. In-depth information on the architecture of 

these models is provided by Ian Goodfellow’s 

groundbreaking paper (Goodfellow et al., 2020). 

In recent years, image learning has been the principal 

field in which GANs are applied. Examples of these 

applications include image synthesis, colorization, 

upscaling, and restoration (Pan et al., 2019; Sorin et al., 

2020; Lu et al., 2022). Thispersondoesnotexist.com is a 

well-known example, showcasing a GAN trained on 

actual faces that can produce realistic-looking but 

wholly fake faces. However, using picture data to train 

GAN models can be an exhausting procedure that takes 

weeks or months at times. 

Despite this, text and numerical data have also been 

effectively processed using GANs (Alqahtani et al., 

2021). Remarkably, these models need much less training 

time when applied to non-image data. Because of their 

lower acceptance difficulties, GANs are becoming a more 

useful tool in data science and artificial intelligence 

research. The creation of conditional tabular data (CGAN) 

is one particular use for GAN. 

CGAN has been developed for the synthesis of tabular 

data. The purpose of CGAN, an extension of GANs 

designed especially for tabular data, is to produce 

synthetic data with characteristics similar to those of the 

original data. Information arranged in a table or 

spreadsheet format, usually with rows and columns, is 

referred to as tabular data. Insaf Ashrapov’s article 

“Tabular GANs for Uneven Distribution" (Ashrapov, 

2020) explored the idea of using CGANs to generate 

tabular data from real tabular data. 

However, using generated data to improve machine 

learning algorithm prediction error is not guaranteed. To 

address this challenge, this study proposes an MSC 

strategy to use a subset of generated data combined with 

original data to train machine-learning algorithms. For 

this purpose, we split the original data into training and 

testing sets. The training data is used to train CGAN to 

generate synthetic data, while the testing data is used to 

evaluate the prediction performance of machine learning 

algorithms using both original data, generated data, 

combined data, and data formed by our MSG strategy. 

Our MSC strategy utilizes different numbers of splits to 

divide the generated data into sub-sets. We demonstrate 

through simulations that our MSC strategy improves the 

performance of machine learning algorithms compared to 

using real data alone, generated data alone, or simply 

combining all available data. 

Materials and Methods 

Conditional Generative Adversarial Network 

A modified version of GANs that introduces the 

idea of conditioning the generative process on extra 

information is Conditional Generative Adversarial 

Networks (CGANs). While CGANs enable the 

production of samples conditioned on input data, 

ordinary GANs generate samples from random noise. 

Figure 1 illustrates a basic depiction of the GANs and 

CGANs model’s structure. 

The CGANs are composed by: 

 

 Generator: CGANs are made up of a generator 

network that aims to produce realistic samples, just 

like GANs. In CGANs, on the other hand, the 

generator generates samples (y) using both 

conditional information and random noise (z) as input 

 Discriminator: The discriminator’s job is still to tell 

the difference between created and true samples. It 

examines the given conditions in addition to the 

generated and actual samples. Conditional Data 

Entry: Which can be any kind of extra data that 

directs the generating process, is introduced by 

CGANs. Depending on the application, this could 

comprise class labels, attributes, or any other related 

information (real) 

 

 

 

Fig. 1: Conditional and generative adversarial networks 
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MSC-Strategy Coupled with CGAN 

In this section, we detail our strategy for enhancing the 

performance of machine learning models. As discussed in 

the preceding section, we partition the real data into 

training and test sets. The training set serves as input for 

training the CGAN, while the test set is employed to 

evaluate the performance of each machine-learning model 

discussed in this study. Only the training set of original 

data and the entire set of generated data are used for the 

initial test. The test set from the actual dataset is then used 

to conclude the performance evaluation. During the 

testing phase, it becomes evident that the size of the 

generated data used as a training set directly impacts the 

performance of each model. Some models exhibit 

improved performance when trained solely on real data, 

without incorporating the fully generated data. 

Conversely, other models demonstrate enhancement only 

when a combination of the training set from real data and 

a portion of generated data is utilized. Interestingly, the 

same combination that proves effective for one model 

may yield poor performance for another model. This 

simulation leads us to assert that different portions of 

generated data can be effectively utilized in conjunction 

with the training set of real data to enhance the performance 

of a specific model, while a different combination may be 

more suitable for improving another model. 

Based on these observations, we conclude that we can 

divide the generated data into k-sub-data. We then form a 

new training set by combining each k-sub-data with the 

training set of original data. We then test the model’s 

performance with this new training set. Each combination 

has a different prediction error and we then choose the 

combination with the minimum error. It is noted that the 

number of splits k selected has an influence on our 

strategy. For example, if we choose k = 1, in this case, we 

return to the initial case in which we combine the train 

data of real data with the generated data during the initial 

phase. As a result, k is a hyperparameter of our strategy. 

Figure 2 presents the main steps of the MSC strategy and 

Algorithm 1 describes the steps to select the best Root 

Mean Squared Error (RMSE) and Mean Absolute Error 

(MAE) metrics for a given machine learning model. 

 

 
 
Fig. 2: The main steps of the MSC-strategy 

Algorithm 1 MSC-Strategy algorithm 

  1: function GETBESTRMSEANDMAE 

  2: Input: model,Xtrain, ytrain, Xtest , ytest , Xg, yg, k 

  3: Output: bestRMSE, bestMAE, 

  4: bestsplitRMSE, bestsplitMAE 

  5: Initialisation: 

  6: bestRMSE ← ∞ 

  7: bestMAE ← ∞ 

  8: bestsplitRMSE ← 0 

  9: bestsplitMAE ← 0 

10: D1 ← Splits Xg into k parts 

11: D2 ← Splits yg into k parts 

12: for D1i, D2iin{D1, D2} do 

13: X ← Xtrain ∪ D1i 

14: Y ← ytrain ∪ D2i 

15: Train (model, X, Y) 

16: RMSE, MAE ← Evalate(model, Xtest , ytest) 

17: if (RMSE < bestRMSE) then 

18: bestRMSE ← RMSE 

19: bestsplitRMSE ← i 

20: end if 

21: if (MAE < bestMAE) then 

22: bestMAE ← MAE 

23: bestsplitMAE ← i 

24: end if 

25: end for 

26: return bestRMSE, bestsplitRMSE, bestMAE, 

  bestsplitMAE  

27: end function 
 

Here’s a step-by-step description: 
 
 Input Parameters: 
 

 Model: The machine learning model under 

evaluation 

 Xtrain, ytrain Training data 

 Xtest, ytest: Test data 

 Xg,yg: Generated data by CGAN 

 k: The number of splits used for dividing the 

generated data 
 
 Initialization: 
 

 Initialize bestRMSE and bestMAE to infinity. 

These variables are updated during the execution 

of the algorithm to store the best metrics found 

 Data splitting: 

 Split the generated data Xg into k parts, stored in D1 

 Split the corresponding labels yg into k parts, 

stored in D2 
 
 Model evaluation loop: 
 

 Iterate over each pair of splits D1i and D2i from 
the generated data 

 Form a new training set by combining the original 
training set with the current split (D1i, D2i) 
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 Train the model with the combined training set 

 Evaluate the trained model on the test set (Xtest, 

ytest) to obtain RMSE and MAE metrics 
 

 Update best metrics: 
 

 If the RMSE and MAE obtained from the current 

model are both better (lower) than the current 

best metrics, update bestRMSE and bestMAE 

 After evaluating the model for all splits, return 

the best RMSE, MAE, and best-split index 
 

To determine which model performs best on RMSE and 

MAE measures, the program iteratively trains and evaluates 

the model on various combinations of the generated data. 

Results and Discussion 

In this section, we discuss the quality of the generated 

tabular data and the performance of the models presented 

in this study on real data, generated data, a combined 

dataset, and data formed by the MSC strategy. The data 

used in this study contains historical tabular power 

consumption data collected from Tetouan City, situated in 

the northern region of Morocco. The dataset is unique and 

complete, with no missing data, collected at 10 min 

intervals, spanning from January 1, 2017, 00:00:00 to 

December 31, 2017, 23:50:00. It contains records of date, 

time, and consumption figures for the three distribution 

networks (Salam and El Hibaoui, 2018). This dataset 

contains four features that have already been presented, 

namely: Temperature (T), Humidity (H), Wind Speed 

(WS), General Diffuse Flows (GDF), Diffuse Flows (DF), 

and other features created from a datetime column such as 

hour (h), day (d), minute (m), month (mon), day of the 

year (dy) and quarter (q). The target variable of this 

dataset is energy consumption. The presented work was 

then turned into a Python package called tabgan, which 

makes it easier to use CGAN to produce tabular data. The 

creation of numerical and textual category data is 

supported by the library. Table 1 presents the parameters 

of our CGAN architecture. 

Also, Table 2 presents the key hyperparameters 

employed for various regression models in the study. 

Noteworthy, parameters are specified for each model, 

providing transparency and facilitating reproducibility of 

the experimental setup. 

Quality of Generated Tabular Data 

In this section, the evaluation of synthetic tabular data 

generated using CGAN is explored. To make sure that the 

synthetic data is representative of the underlying data 

distribution and can be utilized successfully for tasks like 

data analysis, machine learning models, and decision-

making, it is important to evaluate the quality of the 

generated data. While high-quality synthetic data can 

preserve the statistical features and patterns of the original 

data, poorly created data may produce biased or 

fraudulent results (Krippendorff, 2009). 

A variety of evaluation methods are used to determine 

the quality of the generated tabular data. These methods 

include feature distribution comparison, feature correlation 

analysis, data-driven metrics, visual inspection (Lanovaz and 

Hranchuk, 2021), and summary statistics calculation 

(Kenney, 1939). In addition, we discuss the importance of 

user input and regression performance in evaluating the 

usefulness of synthetic data generated by our approach. 

A computation of summary statistics on the produced 

and original data using Python and Panda's package is 

explored (McKinney, 2015). Quick overviews of the 

distribution of the data are provided by summary statistics 

like mean, median, and standard deviation, which can aid in 

discovering possible differences between the two datasets. 

It’s crucial to remember that summary statistics might not be 

able to fully capture every component of data quality, so 

additional assessment techniques should be used in 

combination for an extensive assessment. The distribution of 

the target variable is presented in the column (energy). 
 
Table 1: CGAN parameters and values 

Component Parameters 

Generator Learning rate: 0.005 
 Optimizer: Adam 
 Loss function: Binary Cross-Entropy (BCE) 
 Number of layers: 2 hidden layers with Leaky  
 ReLU activation 
 Gradient penalty: 10 (encourages Lipschitz continuity,  
 crucial for W1 distance) 
Discriminator Learning rate: 0.005 
 Optimizer: Adam 
 Loss function: Binary Cross-Entropy (BCE) 
 Number of layers: 2 hidden layers with Leaky  
 ReLU activation 
 Gradient penalty: 10 (encourages Lipschitz continuity,  
 crucial for W1 distance) 

 
Table 2: Regressor parameters and values  

Regressor Parameters Values 

GB n estimators 100.00 
 learning rate 0.10 
 max depth 3.00 
XGB objective REG squared error 
 random state 50.00 
 max depth 6.00 
 learning rate 0.08 
 n estimators 500.00 
DT max depth 5.00 
 random state 42.00 
KNN n neighbors 5.00 
RF n estimators 30.00 
 max depth 7.00 
 max features Auto 
 min samples split 2.00 
 min samples leaf 1.00 
 random state 42.00 
SVR C 1.00 
 Kernel RBF 
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Tables 3-4 present a summary of statistics for the 

original data and generated data. Due to space constraints, 

only the statistics for some features such as T, H, WS, 

GDF, and DF are presented. 

We can see from the comparison that the generated 

data’s summary statistics and the original data’s summary 

statistics are basically comparable. The close to means, 

standard deviations, and percentiles show that the CGAN 

was successful in capturing the primary statistical 

characteristics of the original data. This implies that the 

generated data reflects the properties of the original 

distribution and is of a reasonably high quality. 

However, the number of records in the generated data 

(44,000) is significantly larger than that in the original 

data (35,118), which is due to the CGAN's ability to 

generate a more extensive dataset. This increase in the 

dataset size could be beneficial for certain applications, 

but it’s essential to ensure that the additional samples 

remain representative of the original data distribution. The 

number of records generated by CGAN is significant, but 

it is beyond the scope of this study. 

The minimum, first quartile, median, third quartile, 

and maximum of each feature and target variable in both 

datasets are presented in Figs. 3-4 respectively. From both 

figures, the distributions of humidity, month, day of the 

week, quarter, day of the year, and hour are roughly 

symmetrical. The distributions of other features are 

skewed, with a few outliers. Overall, the generated data 

showed a representative quality and was quite like the real 

data, despite small differences across various variables. 

For a more detailed visualization of the distribution of 

each feature, histograms, and kernel density plots are 

presented in Fig. 5. Also, the Heatmap correlation between 

real data and generated data is presented in Fig. 6. 
 
Table 3: Summary statistics for original data 

 T H WS GDF DF Energy 

Count 35118.00 35118.00 35118.00 35118.00 35118.00 35118.00 

Mean 18.83 68.21 1.96 183.81 74.88 32330.43 

Std 5.78 15.57 2.35 265.10 123.99 7120.87 

Min 3.25 11.34 0.05 0.00 0.01 13895.70 

25% 14.45 58.18 0.08 0.06 0.12 26335.93 

50% 18.83 69.83 0.09 5.20 4.60 32279.85 

75% 22.87 81.40 4.92 324.58 100.40 37261.59 

Max 39.78 94.80 6.48 1163.00 936.00 52204.40 

 
Table 4: Summary statistics for generated data 

 T H WS GDF DF Energy 

Count 44000.00 44000.00 44000.00 44000.00 44000.00 44000.00 

Mean 19.01 67.33 1.94 220.18 98.49 32676.64 

Std 6.07 16.07 2.32 274.31 143.81 7739.22 

Min 4.45 16.01 0.06 0.01 0.04 13720.18 

25% 14.56 57.29 0.08 0.07 0.14 26651.10 

50% 18.81 69.36 0.14 73.63 37.63 32499.48 

75% 23.02 80.60 4.91 406.42 140.02 37679.73 

Max 36.86 93.70 4.97 937.65 748.00 55976.28 

 

 
Fig. 3: Comparison of feature distributions between real data 

and generated data 

 

 

 
Fig. 4: Comparison of energy consumption distributions 

between real data and generated data 

 

 
 
Fig. 5: Real data and generated data feature distribution comparison 
 

For each feature, histograms and kernel density plots 

consistently align, indicating that the CGAN has 

identified correlations and patterns in the original data, 

generating synthetic data that closely mirrors the 

distribution of real data. The synthetic data is expected to 

be effective as a substitute for the original data in our 

subsequent steps, given the high degree of similarity in the 

feature distributions. This observation is further supported 

by the correlation heat map. 

 
Generated data 
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Fig. 6: Heat map correlation comparison between real data and 

generated data 

 

Performance Analysis of Machine Learning Models  

The comparative evaluation of each regression 

model’s overall performance using Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE) on the 

original, generated, combined datasets and MSC-Strategy 

dataset is presented in this section. 

Table 5 presents the results of various regression 

algorithms applied to data, using the RMSE metric. The 

results also include comparisons between the original data 

(R), Generated data (G), Combined data (C), and MSC-

strategy data (MSC). Additionally, the last column in each 

table shows the percentage difference between the RMSE 

of the original data and the MSC data. 

Based on the RMSE analysis results for each 

algorithm, the summarized findings are as follows: Our 

MSC strategy outperforms the original data by 2.47% for 

DT. It is slightly better than the original data for GB with 

an improvement of 0.97% and a noticeable improvement 

of 3.95% for KNN. We also show an improvement in 

prediction for RF, SVR, and XGB with 0.95, 0.37 and 

0.29%, respectively. These results highlight the 

effectiveness of our strategy with all models, proving to 

be a valuable approach for enhancing model performance 

compared with other training data. 

The Mean Absolute Error (MAE) values for various 

regression algorithms are displayed in Table 6. The MAE 

values for the following are given: MAER for the original 

data, MAEG for generated data, MAEC for combined 

data, and MAEMSC for a MSC-Strategy. Furthermore, 

the MAER vs. MSC (%) percentage difference between 

MAER and MAEMSC is given. 

The value of MAE can be analyzed to obtain important 

insights into how different regression algorithms are 

affected by an MSC approach. Across all models, DT and 

KNN show better performance when using the MSC 

approach. GB, SVR, XGB, and RF on the other hand, 

exhibit negligible variations in MAE, suggesting that the 

MSC method has less of an impact on its performance. 

Figures 7-8 display information about the number of 

splits for different regression algorithms in terms of RMSE 

and MAE given by the MSC Strategy. Also, Table 7 

presents the optimal number of splits. The results show 

that the number of splits varies across regressors. 

Generally, more splits result in lower RMSE and MAE, 

indicating better model performance. DT and GB perform 

best with 7 splits. KNN and RF achieve the lowest RMSE 

and MAE with 3 and 8 splits, respectively. SVR and XGB 

have the lowest MAE with 9 splits. 
 

Table 5: Comparing RMSE of original, generated, combined data, and 
MSC data 

     RMSER vs.  
Algorithm RMSER RMSEG RMSEC RMSESC MSC (%) 

DT 2686.51 2940.00 2813.47 2620.16 2.47 
GB 1945.23 2272.87 2080.21 1926.34 0.97 

KNN 2135.82 2157.80 2234.92 2051.53 3.95 
RF 1918.45 2188.77 2108.52 1900.17 0.95 

SVR 3333.64 3380.00 3335.56 3321.15 0.37 

XGB 846.31 1411.86 1191.76 843.85 0.29 
 
Table 6: Comparing MAE of original, generated, combined data and 

MSC data 

     MAER vs.  
Algorithm MAER MAEG MAEC MAEMSC MSC (%) 

DT 2008.36 2223.55 2129.95 1967.74 1.51 
GB 1425.00 1692.38 1544.42 1414.22 0.55 

KNN 1506.26 1524.62 1526.57 1421.70 3.96 
RF 1383.64 1644.00 1565.61 1373.16 0.55 

SVR 2609.30 2658.00 2610.69 2601.38 0.24 

XGB 595.90 1001.44 857.50 591.56 0.51 
 
Table 7: Summary of the optimal number of splits for regressors 

Regressor RMSE MAE 

DT 7 7 

GB 7 7 

KNN 3 3 

RF 8 8 

SVR 2 9 

XGB 6 9 

 

 
 
Fig. 7: RMSE value vs number of splits 
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Fig. 8: MAE value vs number of splits 

 

Conclusion 

In conclusion, our study conducted a comparative 

evaluation of regression models on original, generated, 

and combined datasets and the MSC-strategy dataset, 

shedding light on the benefits and challenges of using 

CGAN-generated data for regression applications. The 

results presented compelling insights into the 

effectiveness of CGAN in addressing data limitations and 

MSC-Strategy data in enhancing model performance. Our 

analysis revealed that the RMSE and MAE were 

minimized with the MSC-strategy dataset, which includes 

both the original data and a sub-part of CGAN-generated 

data. The MSC-strategy dataset demonstrated superior 

performance compared to the models trained on the 

original dataset alone and the models trained on CGAN-

generated data separately. 

Our finding emphasizes the potential advantages of 

using CGAN as a means of data augmentation to address 

data limitations, especially in scenarios where obtaining a 

large, diverse, and representative dataset is challenging or 

expensive. The integration of our MSC strategy with 

CGAN-generated data contributed valuable information 

that complemented the original data, leading to improved 

model accuracy and better predictions. The MSC-strategy 

data keeps the models capturing the underlying data 

distribution more effectively, enhancing their 

generalization capabilities. 

However, we acknowledge that the use of CGAN-

generated data is not without challenges. Careful 

validation and quality control are essential to ensure that 

the generated data accurately represents the original data 

distribution and does not introduce biases or artifacts. 

Additionally, the choice of CGAN architecture and 

hyperparameters can significantly impact the quality of 

the generated data and the accuracy of our MSC strategy. 

Overall, our study highlights the potential of MSC-

strategy combined with CGAN-generated data in 

enhancing regression model performance and indicates 

that incorporating such data into the modeling process 

can be a valuable strategy for various regression tasks. 

It opens an avenue for further research and 

experimentation to optimize the number of splits of the 

strategy and explore the applicability of combined 

datasets in different domains. 

In our future work, examining how different 

configurations affect data generation quality could offer 

valuable insights into optimizing the performance of 

CGANs for specific tasks, potentially leading to further 

improvements in prediction accuracy. Also, we tested our 

strategy with another set of generated data. 
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