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Abstract: This research aims to calculate the first three natural frequencies 

and critical velocity of a fluid-conveying pipe are obtained with numerical 

approach with standard finite element method and this by discretizing the 

structure wall and internal flow, starting from beam type with two degrees of 

freedom per node. The determination is done to the vibrational equation from 

the fluid-structure coupling using Lagrange energy principle. Parameters 

frequencies are calculated by using a program developed on MATLAB. The 

advantage of MATLAB language by using standard functions is to present 

the first Eigen-modes of the system aspect interaction fluid-structure for 

different physic and geometric parameters in complex planes. The results are 

converged and compared with those predicted by semi-analytic method. 

Numerical results show the effect of mass ratio, length and elastic foundation 

on stability region and static instability and static instability range.  
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Introduction 

The investigation of free vibration and the stability of 

pipes carrying fluid have attracted the attention of many 

researchers in the last few periods. The results were used 

in several fields, such as pipelines (Wiggert and 

Tijsseling, 2001), engineering industries (Antaki, 2003), 

hydraulic (Al-Maliky, 2013), nanotube (Ghayesh et al., 

2018), thermal power plants (Weaver et al., 2000), heating 

exchangers as nuclear production (Sastry, 1982), etc. 

Study of this subject is much ramified. Païdoussis and 

Besancon (1981; Païdoussis, 1981; Païdoussis and 

Curling, 1985) is the most famous researcher on the 

topic of mating and thanks to his research, the linear and 

non-linear equation of the pipes motion was obtained 

under the influence of many factors (Païdoussis and 

Moon, 1988; Païdoussis et al., 2007; Païdoussis and Li, 

1993). Later on, he published two books (Païdoussis, 

2014; 2016) on fluid–structure interactions and the 

stability of pipes conveying fluid with different 

parameters. His studies have become a basic reference 

for all contemporary research. Doaré after him in 

references (Doaré and de Langre, 2002a; 2002b), he 

touched better on the issue of static instability and 

dynamic instability. In his studies, he presented 

analytical models by calculating the critical velocities of 

fluid. Then, studies continued on this subject and it 

touched the industrial field. Doaré and al. studied 

instability of fluid conveying pipes on Winkler elastic 

foundation. The focus in their paper was on instability of 

infinitely long pipes carrying fluid, by using wave 

propagation approach, wherein results are interpreted in 

terms of static instability neutrality as analytic criteria 

for boundary condition: Pinned-pinned and clamped-

clamped and dynamic neutrality for clamped-free pipe 

(Doaré and de Langre, 2006). Instabilities cause damage 

and fatigue to the system, so it must be studied with 

various physical and geometrical factors. Maalawi and 

Ziada (2002) studies has presented a mathematical model 

for determining the speed velocity of a pinned-pinned 

pipe composed of uniform modules, design parameters 

include the wall thickness and with the length. Mohsen 

and al. studied in the experimental approach based on 

estimating the critical velocities from the measurement 
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of several fundamental natural frequencies, where 

utilizing the boundary condition: Pinned-pinned, 

clamped-pinned and clamped-clamped. In this approach 

low flow-rate pumps and simple fluid circuit can be 

used. The results were used for analysis the buckling 

(static instability) (Ismail et al., 2011). Recently, another 

work by the experimental approach for estimating 

buckling critical velocities from measuring several 

natural frequencies at relatively small flow rates is 

presented (Jweeg and Ntayeesh, 2016). The results show 

good agreement between the estimated and theoretical 

critical velocities in case of pinned-pinned and clamped-

pinned pipes. However for clamped-clamped pipes the 

accurate estimation requires higher flow rates. The 

method can serve using a relatively low pump discharge 

and simple fluid circuit instead of high discharge pumps 

which demand complication in the fluid circuits. 

As presented in the research and results presented, 

this work mainly depends on the so-called Finite 

Element Method (FEM), where the critical velocity of 

flow is calculated according to the disappearance of the 

first natural frequency which is followed by the 

appearance of the first instability pattern (buckling), 

passing to dynamic instability (flutter), taking into 

account the boundary condition and effect of different 

parameters and on it, the first natural frequencies and 

critical velocities of the system are calculated using a 

program developed on MATLAB. This allows us to 

study static instability of buckling and discover its most 

important characteristics. 

Differential Equation of Motion 

The problem to be considered is the vibration analysis 

of a fluid conveying pipe system on an elastic foundation 

Winkler-model. The derivation of the equation is based on 

Bernoulli– Euler elementary beam theory. The physical 

model of system is shown in Fig. 1. Figure 2 shows forces 

on fluid element, and forces and moment of pipe element 

(Païdoussis, 2014; 2016).  

 

 
 

Fig. 1: Representation of the clamped-pinned pipe conveying fluid resting on elastic foundation 
 

 
 (a) (b) 

 
Fig. 2: (a) forces on fluid element; (b) forces and moments on pipe element δs 
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The equation of motion for pipe carrying fluid on a 

Winkler elastic foundation is given as (Païdoussis, 2014): 
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Where, the pipe is long and straight L conveying an 

incompressible fluid with steady speed U; the motions 

are small δs. The elastic foundation Winkler-model is 

KY, ms and mf the masses per unit length of the pipe and 

the fluid, respectively. The Boundary conditions are, 
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Where, the non-dimensional parameters (Païdoussis, 

2014; 2016), are: 
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Where, the potential (deformation) energy and the 

kinetic energy of the solid element expressed by: 
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The kinetic energy of the fluid element can be 

expressed: 
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The potential energy over the length of elastic 

foundation can be expressed: 
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The equation of element deflection for straight two 

dimensional beam elements could have the form (Rao, 

2011): 
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Where, [Ni] represent the shape function and Wi(T) is the 

function which represents the shape of the displacements 

and rotations at nodes, see Fig. 3. The Fig. 4 shows the 

dimensionless coordinates. 

Therefore, Equation (7) becomes: 
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Fig. 3: Beam element nodal displacements; Where, W1, 1, W2 and 2: Are the displacements and rotations at the nodes 

 

 
 

Fig. 4: Reference element 
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Forming shape functions: 
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where, 0  x  1. 

Lagrange’s principle: 
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The standard equation of motion in the finite element 

form is: 

 

          0M q C q K q     (11) 

 

Where: 

[M] = [Ms] + [Mf] = Elementary mass matrix of the system 

[C] = Elementary damping matrix of the 

system 

[K] = [Ks]-[Kf] = Elementary stiffness matrix of the 

system 

 

Considering the displacement vector as: 

 

     .expQ E t  (12) 

 

The governing equation of the system for fluid-structure 

coupling can be transformed into its state-space: 
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where, I is the identity matrix, 

Complex conjugate Eigen-values, m = Rem + jm. 

The stability and static instability of the system under 

consideration is determined by the sign of real part and 

the natural frequencies values (the imaginary part) of the 

complex Eigen-value. 

Results and Discussion 

In studying and analyzing the concept of instability, 

the fundamental natural frequency of a pipe decreases 

with increasing fluid velocity. There are certain cases 

where a decrease in this natural frequency can be very 

important and with large fluid velocities, the pipe may 

become unstable. Results will be discussed for various 

values of β, length L, elastic foundation k (Winkler 

type) and the instability parameters for clamped-pinned 

pipe. The elastic modulus of pipe is (E = 207 GPa), 

pipe length is (L = 1÷2 m), fluid density is (mf = 1000 

kg/m3), pipe density is (ms = 7850 kg/m3), pipe 

thickness for (β = 0.1÷0.9) and the outer diameter of 

the pipe is (0.03 m). 

Boundary conditions with clamped-pinned ends give 

the system more rigidity and stability than pinned-pinned 

ends and less than the clamped-clamped ends. So, the 

raise of the flow velocity is needed to reach the desired 

goal, which is the critical velocity in both modes. The 

cases can be divided into three; according to the 

parameters effect masse ratio β, length L and Winkler 

elastic foundation. 

The validation of our program was made by doing a 

convergence study. Convergence was performed for two 

velocities, Fig. 5 shows the first three proper modes 

according to U = 175 m/s. There is very fast 

convergence for the first two modes according to the 

number of elements. Convergence is obtained for the 

third mode with 13 elements. The program has been 

validated with reference (Ni et al., 2011) by calculating 

the first three dimensionless frequencies as a function of 

the fluid velocity for clamped-pinned pipe with internal 

fluid and β = 0.5. The Table 1 shows that the 

dimensionless results obtained numerically are similar to 

those obtained by the semi-analytical approach so-called 

DTM. The biggest change in the range of 6% is very 

acceptable. It is preferable to use a dimensioning to see 

the effect of flow velocity and mass ration on natural 

frequencies developments. So, the Fig. 6 shows the 

variation of the three first natural frequencies as function 

of fluid velocity with three mass rations, (a) β = 0.1, (b) 

β = 0.3 and (c) β = 0.5, respectively. For U ≡ 0 (fluid at 

rest), the biggest variation on frequencies is 37%. Based 

on the first case, where β = 0.1, for U ≡ Ucr, that is the 

first critical velocity (velocity of static instability) U = 

869.53 m/s, decrease by 77% in the third case (β = 0.5), 

where the critical velocity reaches 199.50 m/s, while the 

critical speed is equal 256,05 m/s for β = 0.3. The 

biggest variation of instability static range is 46%. So, an 

increase in the value of β leads to a decrease in the 

stability region, critical velocities, as well as the 

instability range. The effect of all this analysis is that 

damping in this type of behavior is positive which leads 

with the passage of time to gradually reduce the rigidity 

of the system down to flutter. Other than the dimensional 

results, dimensionless results obtained do not show these 

changes for different mass ratios, Fig. 7. The second 

discourse of this paper deals with the study of the effect 

of length on the natural frequencies as a function of the 
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fluid velocity for three different lengths (L = 1, L = 1.5, 

L = 2), with mass ratios β = 0.3 Fig. 8. The variations 

show that length has significant effect on the rigidity 

which lowers the frequencies of the system according to 

the flow velocity and consequently quickly reaches the 

first critical velocity of buckling. The biggest variation is 

equal to 44%, where the critical velocity of static 

instability drops from 1.44 π to 1.19 π (L = 1.5) and to 

1.08 for L = 2, while the biggest variation on natural 

frequencies do not exceed value of 16.50%. The change 

in the level of instability range is evident, increasing 

with the increase in length, where the changes reach 

38.93%. The last case is devoted to the study of the first 

natural frequencies of a clamped-pinned pipe carrying 

fluid which rests on an elastic foundation such as 

Winkler-type. The effect of the elastic is stabilizing for 

the system, as show in the Fig. 9. Four different values 

of k-Winkler type were used. The stability of the system 

increases with increasing k, with the critical velocity 

corresponding to static instability, while decreasing the 

instability range as shown in the Fig. 9 depending on, as 

the biggest change is found over 58%. The critical 

velocity of static instability is 2.67 π for k = 103, with an 

increase of 45.31%. 

 

Mass Ratio Effect 

 

 

 

 
Fig. 5: Convergence of the first three natural frequencies of clamped-pinned pipe, U = 150 m/s, β = 0.5 
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(b) 

 

 
 

(c) 

 
Fig. 6: Three proper modes on fluid velocity function of clamped-pinned pipe conveying fluid with different mass ratio, (a) β = 0.1, 

(b) β = 0.3, (c) β = 0.5 
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(b) 

 
Fig. 7: Three proper modes on fluid velocity function of Clamped-pinned pipe conveying fluid, (a) β = 0.3, (b) β = 0.5 
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Fig. 8: Effect of length on the natural frequency of the pipe at different fluid velocities 

 

Elastic Foundation Effect 

 

 
 

Fig. 9: Effect of foundation stiffness on the natural frequency of the clamped-pinned pipe at different fluid velocities, β = 0.3 
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Table 1: The first natural frequency of a clamped-pinned fluid-

conveying pipe for various values of u and β = 0.1 

  = 0.1 

 ----------------------------------- 

u 1 DTM 1 FEM Variation 

0.0 15.4183 15.4181 0.000 

0.1 15.4131 15.4106 0.016 

0.5 15.4001 15.3214 0.511 

1.0 14.9797 15.0276 0.319 

2.0 13.6124 13.7932 1.328 

3.0 11.1054 11.4542 3.140 

4.0 6.6146 7.0170 6.083 

4.499 0.0000 0.0000 0.000 

 

Conclusion 

The free vibration of pipe transporting a fluid is treated, 

for boundary conditions: Clamped-pinned ends. The pipe 

structure and internal flow were modeled by Euler–

Bernoulli beam. The numerical aspect with the finite 

method gives solutions in a complex plane by determining 

the proper modes of our system; the numerical results are 

finally combined with the semi-analytic results DTM. 

Several examples have been treated for the study of the 

influence of different geometric and physic parameters on 

the system instability. The first observation that can be 

made is that the natural frequencies of the system weight 

the velocity of the flow. The instability appears when the 

flow velocity exceeds a threshold called critical velocity of 

static instability, when the first frequency is equal to zero 

(the first proper mode disappears). It had noticed that 

increasing β slightly decreases the rigidity of the system 

(by loss of rigidity) and the system consequently decreases 

their natural frequencies. The result showed a large 

variation in the values of stability region and instability 

with the increase in the mass ratio. It had noticed that 

increasing length L slightly decreases the stability region 

and critical velocity of instability and consequently leads 

to an increase in the instability range. The typical Winker 

elastic foundation increases the rigidity of the system and 

consequently the natural frequencies and the critical 

velocities. What distinguishes most of this research from 

others is its discussion of the axis of instability and what it 

means in this field that is why some analysis and 

calculation were done in the presented research, hoping to 

continue with other work in the same field. 
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